3 气体灭火系统的定性选择
3.1 环境因素
在进行分析时,首先我们把对自然的干扰为A级(即化合物)的灭火剂排除。我们选用B、C级灭火气体进行比较,可以看到,在B、C级中有IG—01、IGLOO和IG55,以及IG—541,IG—541和IG—55均由混合气体组成,且IG—541含有CO2,IG—55中含有N2,在高温高压下有可能参与化学反应,对自然有一定干扰。最后我们来分析C级灭火气体中的IG—01和IGLOO,这两种气体均为单质,但IG1OO为N2组成,在高温高压下有可能参与化学反应;而IC—01气体完全由自然界存在惰性气体组成,它的释放是将这些气体放归自然,对环境没有影响。
3.2 毒性
关于毒性方面的比较,我们分别以对生命的保护和对财产的保护两个方面来论述。
3.2.1 对生命的保护
对生命的保护主要要求灭火剂毒性低,对人体无影响,有利于防护区人员的安全疏散等。
IG—01、IG—100、IG—55、七氟丙烷和IG—541的NOAEL均不小于系统的最小设计浓度,就灭火剂在防护区内本身喷放而言,对人体是相对安全的。
因此,我们选用IG—01、IG—541、七氟丙烷和C02为代表进行比较。
IG—541中由于含有8%的CO2,随着灭火浓度的增高,保护区中的CO2:含量随之增大。特别是对于计算机房类火灾来说,无论是欧洲CEA标准、德国VDS标准还是我国唯一的气体灭火标准(二氧化碳灭火系统设计规范GB50193—93)中同样要求电子计算机房的灭火浓度为47%,且要求抑制时间10分钟。此时,IG—541中的CO2的含量接近于4%,有可能会对人体产生危害。
七氟丙烷最小设计浓度为7.5%,无毒性反应的最高浓度(NOAEL)为9%,有毒性反应的最低(LOAEL)为10.5%,该三个值比较接近。事实上,当防护区内七氟丙烷的浓度在5%~9%时,人员可停留时间为1min。而浓度高于9%时只能用于无人停留区域。此外七氟丙烷在灭火过程中的高温条件下裂解有剧毒物氢氟酸产生,散发着刺鼻的气味,有一定的腐蚀性。这也是灭火时七氟丙烷必须在10s内释放完毕的关键原因。
CO2对人体危害主要是窒息作用,在有人场合使用具有危险性。 把安全工程师站点加入收藏夹
二氧化碳灭火系统的最小设计灭火浓度为34%(Kb=1.0),大于20%为致死浓度。所以CO2灭火系统用于有人的场所必须考虑人员报警与撤离延时喷放问题。
此外,七氟丙烷和CO2以液态储存,喷放过程中迅速气化会产生大量的“白雾”,在一定程度上影响了内部人员的安全疏散。
IG—01的灭火机理是降低空气中氧气的含量。一般而言,当氧气在空气中的含量低于15%时燃烧难于维持。IG—01在实施灭火时,将氧气的含量降低至12.05%,使火熄灭。对处于火灾现场的人而言,正常人在10%以下的氧气条件下会缺氧。
IG—01是以气态储存的纯惰性气体,喷放时可以清楚地看到紧急出口,在高温条件下甚至与火焰接触也不会分解产生有毒或有腐蚀性的分解物。因此IG—01对人员是安全的。
因此,从保护生命的角度出发,在有人场所适合选择IG—01灭火系统。但IG—01灭火系统也有不可克服的缺点,如因为以气态储存,导致钢瓶数量多,且储存压力高达16MPa,高于其他气体灭火系统,亦可视为一种不安全因素。
3.2.2 对财产的保护
CO2是以液态储存的灭火剂,喷放时会使防护区内的温度在短时间内急剧下降,使精密设备和珍贵财物因“冷激”或“冷脆”作用而损坏。喷放时还从周围吸收大量热量,使空气中的水蒸气大量凝结,产生严重的结露”现象而损坏财物。尤其是对计算机房、通信机房内的集成芯片、电路有较大影响,并会使电器设备表面产生静电积累。
七氟丙烷在一定程度上也存在与CO2相同的危害。由于七氟丙烷在灭火过程在高温条件下会裂解产生HF等酸性分解物,从而产生结露,对设备造成损害。
IG—541以压缩气体的形式储存,喷放时防护区内温度变化很小,仅为2C左右,不会在保护设备表面形成冷凝。IG—541由氩气、 CO2、氮气气体组成,由于含有CO2和氮气,在高温高压下有可能会发生化学反应。
IG—01以压缩气体的形式储存,喷放时防护区内温度变化很小,仅为2C左右,不会在保护设备表面形成冷凝。IG—01由100%惰性气体氩气组成,无腐蚀性,喷放后无残留物,灭火时不会发生化学反应,不污染环境,无毒,具有良好的电绝缘性能,不会对被保护设备构成损害。
因此,对于有精密设备、珍贵财物等的场所,使用IG—01灭火系统较为适宜。