ڵλã233У>˸߿>Ŀѧ>ģ

2017˸߿Ŀѧ½ѵϰ(2)

һѡ

1.()f(x)=x|x+a|+b溯ijҪ( )

A.ab=0 B.a+b=0 C.a=b D.a2+b2=0

2.()a=1Ǻy=cos2ax-sin2axСΪС( )

A.ֲҪ B.Ҫ

C.Ҫ D.ȷdzҲDZҪ

3.()a=3ֱax+2y+3a=0ֱ3x+(a-1)y=a-7ƽҲغϵ_________.

4.()AF(x,y)=0G(x,y)=0ཻڵP(x0,y0),BF(x,y)+G(x,y)=0(Ϊ)P(x0,y0),AB__________.

5.()Ƿx2-ax+b=0ʵԷa>2b>1¾1ʲô?

6.()֪{an}{bn}㣺bn= ,֤{an}ɵȲеijҪ{bn}ҲǵȲ.

7.()֪Cy=-x2+mx-1͵A(30)B(03)C߶ABͬijҪ.

8.()p:-2

ο

ѵų

֤(1)ԣΤﶨ|b|=|·|=||·||<2×2=4.

f(x)=x2+ax+b,f(x)ͼǿϵ.

||<2,||<2,f(±2)>0.

4+b>2a>-(4+b)

|b|<4 4+b>0 2|a|<4+b

(2)Ҫԣ

2|a|<4+b f(±2)>0f(x)ͼǿϵ.

෽f(x)=0ͬ(-22)ڻʵ.

ߦǷf(x)=0ʵ

ͬ(-22)ڣ||<2||<2.

ѵѵ

һ1.a2+b2=0,a=b=0,ʱf(-x)=(-x)|x+0|+0=-x·|x|=-(x|x+0|+b)

=-(x|x+a|+b)=-f(x).

a2+b2=0f(x)Ϊ溯ijf(x)=x|x+a|+b溯f(-x)=

(-x)|(-x)+a|+b=-f(x),a=b=0,a2+b2=0.

a2+b2=0f(x)Ϊ溯ıҪ.

𰸣D

2.a=1,y=cos2x-sin2x=cos2x,ʱyСΪ.a=1dzy=cos2ax-sin2ax=cos2ax.ʺyСΪ,a=±1,a=1DZҪ.

𰸣A

3.a=3ʱֱl1:3x+2y+9=0;ֱl2:3x+2y+4=0.l1l2A1A2=B1B2=11C1C2=941,C1C2,a=3 l1l2.

𰸣Ҫ

4.P(x0,y0)F(x,y)=0G(x,y)=0Ľ㣬F(x0,y0)+G(x0,y0)=0F(x,y)+G(x,y)=0P(x0,y0);֮.

𰸣ֲҪ

5.⣺Τﶨa=+,b=.жp: q: (עpabǰǦ=a2-4b0)

(1) a=+>2,b=>1,q p

(2)Ϊ֤p q,Ծٳȡ=4,= ,a=+=4+ >2,b==4× =2>1,q.

ۿ֪a>2,b>1Ǧ>1,>1ıҪ.

6.֤ٱҪԣ

{an}ɵȲУΪd,{an}ɵȲ.

Ӷbn+1-bn=a1+n· d-a1-(n-1) d= dΪ.

{bn}ǵȲУΪ d.

ڳ:

{bn}ǵȲУΪd,bn=(n-1)d䪤

bn(1+2++n)=a1+2a2++nan

bn-1(1+2++n-1)=a1+2a2++(n-1)an

-ڵãnan= bn-1

an= ,Ӷan+1-an= dΪ{an}ǵȲ.

{an}ɵȲеijҪ{bn}ҲǵȲ.

7.⣺ٱҪԣ

֪ã߶ABķΪy=-x+3(0x3)

C߶ABͬĽ㣬

Է *ͬʵ.

Ԫãx2-(m+1)x+4=0(0x3)

f(x)=x2-(m+1)x+4,

ڳԣ

3

x1= >0

෽x2-(m+1)x+4=0ȵʵx1,x2,0

ˣy=-x2+mx-1߶ABͬijҪ3

8.⣺xķx2+mx+n=02С1Ϊx1,x2.

0

Τﶨ -2

֮ȡm=- <0

x2+mx+n=0ʵp q

pqıҪ.

2017ɿ⣺2017˸߿ʷƾѧģ

2017ɿ2017˸߿ʱ/

äĿ㣬ͻѵ㣬2017˸߿Чͨ>>

登录

新用户注册领取课程礼包

立即注册
扫一扫,立即下载
意见反馈 返回顶部