近两年来,混凝土施工中高效减水剂与水泥相容性不好的问题发生得更多,高层建筑基础底板、地下连续墙和楼板甚至大梁开裂问题频频发生。有些施工单位反映“混凝土一上C40就裂”。其原因很复杂,涉及多方面。仅就技术而言,施工质量的控制(涉及施工管理技术水平、施工人员的素质等)、混凝土的原材料和配合比是影响工程质量的重要因素。但认识和解决这个问题却不仅是施工部门的事,需要业主、设计、施工、监理单位以至原材料供应方转变传统观念,不断更新知识,把混凝土结构物的耐久性视为工程质量的第一要求,共同探讨影响混凝土结构物耐久性的因素,以提高工程质量。
众所周知,就材料本身而言,混凝土的质量不只是配合比的问题。配合比是与原材料性质相匹配的,使用质量差的原材料很难做出高质量的配合比。目前只要求以试验室中混凝土小试件的抗渗性、抗冻融性、抗碳化性等作为耐久性的保证是与工程实际有距离的。实际上,影响结构混凝土耐久性最重要的因素是抗开裂的性能,&考&试大$而影响混凝土抗裂性的主要因素则是水泥(这里暂不谈骨料的因素),确切地说是胶凝材料的浆体。鉴于混凝土开裂的质量问题突出表现在水泥标准修订以来的近两年,所以有必要来探讨一下其间的关系。本文作者绝无意于得罪任何人,只希望引起讨论,并共同探讨事关百年大计的质量问题。
由于建筑业的需求,现代水泥的组成和细度发生了很大变化。美国在1920~1999年的70多年中水泥和混凝土主要参数变化的趋势是水泥中C3S含量、含碱量、SO3(与C3A匹配)、以比表面积表示的细度等增加,混凝土的水灰比减小。水泥的7d抗压强度增长了几乎2.5倍。近年来国外许多专家根据实际调查研究,对这种趋势提出了批评,指出当前混凝土结构不断增多的过早劣化现象与此趋势有关。“20世纪混凝土业为满足越来越高的强度要求,不可避免地违背了材料科学的基本规律,即开裂与耐久性之间存在的密切关系。为了实现建设可持续发展的混凝土结构这个目标,有必要更新一些观念和建设实践。”
我国水泥标准修订的方针是“与国际接轨”,且已按此趋势发展。回顾这段过程,分析其与混凝土结构耐久性的关系,会有助于我们更新观念,从关心强度转变为关心耐久性,从耐久性的角度评价水泥和混凝土的质量。
1.水泥标准修订的简单回顾
20年来,我国水泥标准进行过三次修订。第一次修订的标准于1979年7月开始实施,第二次1992年开始逐步实施,第三次即最近的一次1999年开始实施。各次修订的基本出发点都是“与国际接轨”(尽管前两次没有使用这个词,但实质相同),促进我国水泥生产工艺的改进和产品质量的提高。
第一次修订是将我国使用了20多年的“硬练”强度检验方法和标准改为“软练”强度和标准。这次变化较大,主要变化如表1所示。
可见,这次修订水泥标准的结果是增加了熟料中的C3A和C3A含量,水泥细度从比表面积平均300m2/kg增加到平均330m2/kg,提高了水泥强度,尤其是早期强度,同时也提高了水化热。因检验强度的水灰比大幅度增加,减小了掺入矿物掺合料后强度的优势。
第二次修订后的GB175-92、GB1344-92等强调了水泥的早期强度,28d强度提高了2%,增加了R型水泥品种。该标准强化了3d早期强度意识,倡导多生产R型水泥,普通水泥的细度进一步变细,&考&试大$从筛析法的<12%改为<10%.水泥标准从“硬练”改为“软练”的主要变化变化因素 GB175-63 GB175-77熟料的石灰饱和系数(KH) 0.85左右 0.90左右C3A含量 5%~7% >8%检验强度所用灰砂比 1∶3 1 :2.5检验强度所用加水量 P/4+2.6 固定0.44用相同熟料检查28d抗压强度的差别 497kg/cm2 425kg/cm2 613kg/cm2 525kg/cm2细度 4900孔/cm2筛余≤15% 0.08mm筛余≤15%注:只列出硅酸盐水泥和普通硅酸盐水泥的该量;GB175-1999、GB1344-1999等把强度检验的水灰比改为0.50,取消了GB175-92中的325号水泥。水泥的旨度进一步提高,迫使水泥石以提高C3S、C3A和比表面积来提高水泥的强度。某厂对21种来自不同厂家的熟料(包括“大水泥”和“小水泥”的)进行分析,C3S超过60%的有4个样本(占总样本的19%),超过58%的(含60%以上的)有10个(占47.6%),有17个样本的C3A含量超过10%,&考&试大$大部分水泥细度超过了350m2/kg.从上述情况可见,我国水泥各有关参数和性质变化的历程和趋势与国外相似。特点是增加C3S、C3A,细度趋向于细,因而强度尤其早期强度不断提高。此外,20世纪70年代后期我国开始引进国外先进水泥生产的干法工艺,使水泥的含碱量提高,尤其是使用北方原材料的水泥含碱量普遍较高。
GB175-1999对水泥中的含碱量进行了限制,但只是出于对预防碱骨料反应的考虑。这种变化的趋势虽然对混凝土提高早期强度有利,但却增加了混凝土的温度收缩及干燥收缩,再加上较低水灰比产生的自收缩,处于约束条件下的混凝土结构较大的收缩变形因高的早期强度而提高的早期弹性模时产生较大的应力,而高的早期强度又使能缓释收缩应变的途变很小,于是开裂成为必然。
以下分别分析上述几个因素对混凝土抗裂性的影响。