您现在的位置:233网校 >二级建造师 > 专业工程管理与实务 > 水利水电工程辅导 > 水利水电工程学习笔记

大跨度桥梁颤振稳定性研究方法

来源:233网校 2008-04-14 11:26:00

  2.非定常气动力计算模型

  桥梁结构分离流颤振实验加理论方法的建立与完善是与著名气动力专家R.H.Scanlan的贡献紧密联系在一起的。1967年,Scanlan首先提出对Theodorsen机翼气动力表达式进行修正的建议「11」。Scanlan认为,对于非流线性的钝体截面,不可能从基本的流体力学原理推导出类似于Theodorsen函数的气动函数,但可以通过专门设计的节段模型风洞实验测定小振幅条件下的气动力参数——颤振导数(Flutter Derivatives)来建立线性非定常气动力计算模型[18]

  1974年,Scanlan利用节段模型风洞实验中实测的颤振导数反算出过渡函数(Indicial Function)[21],并与Theodorsen函数进行了比较,结果发现两种函数曲线相差很大,从而找到了利用古典耦合颤振理论分析钝体桥梁颤振问题所造成的误差原因。Scanlan还断言,从理论上找到适合于各种非流线型断面的过渡函数是不可能的。

  3.M维颤振分析方法

  一旦建立了非定常气动力计算模型,气动失稳临界状态就很容易确定了,其中,最典型的方法就是将所谓阿'片条理?quot;应用于气流与结构相互作用之中,确定出一个垂直于桥轴线方向的二维节段,假定沿着桥轴线方向的任意三维影响都可以忽略不计,由此可得二维颤振方程。

  与传统的机翼颤振类似,阻力方向的振动影响一般忽略不计。此外,还假定二维节段在h和α两个方向的振动是小振幅的同频简谐振动,这样就可以在传统的颤振分析中采用随折算频率变化的非定常气动力。

  4.Selberg计算公式

  在电子计算机诞生之前,颤振分析的数值计算工作一直是一项枯燥繁重的劳动。为了简化这项枯燥的工作,人们提出了许多颤振简化计算方法。对于平板机翼,由于每一种翼型的气动力表达式都有一定的差异,因此需要对一系列的结构参数进行分析,才能有针对性地进行额振计算,Theodorsen和Garrick[24]在这方面作了大量细致的工作,找到了一些实用的机翼颤振计算公式。而在桥梁结构方面,许多研究人员也作出了相同的努力,其中Selberg实用计算公式是被引用得最多的一种二维颤振实用计算公式。

  四、三线桥梁颤振分析

  Scanlan提出的非定常气动力计算模型较好地解决了非流线形截面的非定常气动力描述问题,其中二维颤振分析最为简单实用。但是随着桥梁跨径的日益增大,结构刚度急剧下降,特别是侧向刚度的下降,导致了侧弯与扭转振型紧密耦合。此外,结构各阶自振频率的差异很小,两个或两个以上振型参予颤振的可能性逐渐增加,因此,为了提高桥梁颤振分析精度,有必要寻求更精确的三维桥梁额振分析方法。

  1.时域分析法

  尽管桥梁颤振分析一般是在频域内进行的,但是也出现了一些时域分析方法。早在70年代初,Scanlan,Beliveau和Budlong采用飞行器设计中的传递函数首先提出了全时域分析方法[21],Bucher和Lin将这种方法推广到了耦合模态颤振[27].但是,这一方法的主要困难在于寻找与实验所确定的气动导数相对应的合适的过渡函数,特别是当截面为非流线型时,难度更大。近年来,人们之所以投入了大量的精力从事开发有效的非定常气动力的时域表达式,主要是因为这种时域表达式既可与有限元结构计算模型相结合又能包含几乎所有的非线性因素,而这些非线性因素以前是一概忽略的。时域方法的发展是与诸如日本 Akashi桥、丹麦Storebraelt桥和意大利的Messina桥等超大跨度桥梁的规划和设计紧密联系在一起的。

  Miyata等人清楚地阐明了时域分析方法在桥梁抖振响应估计中的优越性,特别是在采用有限元结构计算模型时的优势[28],他们在片条假定的前提下,采用了传统的准定常气动力表达式。 Kovacs等人也曾提出过类似的方法[29].但在另一方面,Diana等人应用不同折算风速下的气动力系数等效线性化方法建立了一种所谓精确的准定常理论「30」,这一理论方法除了不能考虑气动力时效影响和升力的展向相关性之外,在许多方面被证明是足够数确的。

  另一种自激力模型是采用与Laplace变换相对应的有理函数来近似表示非定常气动力。实质上,这种思路与过渡函数是完全类似的。Xie等人将这一思想完善成状态空间法用来分析多模态三维桥梁颤振问题「31,32」。类似的方法还曾经由Lin和Li「31」,M.S.Li「34」,Boonyapinio[35], Fujino[36]等人提出。

  2.多模态耦合颤振

  三维桥梁颤振分析更多地是采用频域分析方法。放弃片条假定后的三维桥梁颤振分析方法的应用还只有很短的历史,这种分析主要通过两种不同的途径来实现:第一条途径是将频率或时域内的非定常气动力直接作用到结构的三维有限元计算模型上,一般称为直接方法;第二条途径是把结构响应看作是分散在各阶模态上的影响,然后将各阶模态所对应的响应叠加起来,称为模态叠加法。

  直接法是由Miyata和Yamada提出的,他们把直接法归纳为用频域内气动导数所表示的一个复特征值问题「37」,这一方法的基本原理简单,但主要缺陷在于需要大容量的计算机来求解费时的复特征值问题。因此,许多研究者提出了另一种方法,即模态叠加法,现有许多种频域内的多模态参予颤振分析方法。Agar[38,39]和Chen[40,41]采用模态计术来求解线性二次特征值方程。作为机翼颤振分析方法一p-k的推广,Nmini等人「42」和程「43」提出了更加一般性的p-k-F法,通过求解模态方为确定颤振前后的状态。更进一步的还有Lin和Yang[44],Jones和Scanlan[45],Tanaka等人[46],Jain等人[47]直接利用行列式搜索法求解广义特征矩阵的复特征值。

  几乎所有三维颤振分析都是在频域中进行的,并且基于了模态叠加假定。这一假定认为固有模态之间的动力耦合是通过自激气动力来实现的。然而,值得注意的是,这一假定存在着一些本质上的缺陷。首先多少阶模态和那些模态参与了颤振失稳,特别是在结构跨径很大或在施工过程中结构总体刚度尚未完全达到时,极有可能发生有两个以上的振动模态参与了颤振;其次,这种模态组合仅仅是颤振模态的一种近似表达式,没有任何理由使人们相信这是完全精确的,特别是在参与颤振的模态之间缺乏几何相似性时,颤振模态本身会变得非常复杂。正是考虑到这些因素,有必要建立一种更加综合和精确的方法来分析颤振模态,增进对悬吊体系桥梁气动失稳机理的理解和认识。

  3.全模态颤振分析

  全模态颤振分析方法是由本文作者提出的一种适合于大跨度桥梁颤振计算的方法,它是在Scanlan非定常气动力假定基础上建立起来的一种频域内颤振分析的精确方法,是对多模态颤振分析的一种推广[48,49].

  所谓精确方法,主要体现在两个方面,首先全模态方法不再像多模态方法那样将自激气动力作为外力作用在桥梁结构上,而是把桥梁结构与绕流气体作为一个相互作用的整体系统,建立系统颤振方法。

  五、算例比较

  为了比较各种桥梁颤振分析方法的适用性和精确性,现以流线型断面的悬臂机翼结构和钝体截面的上海南浦大桥为例,分析和比较颤振临界风速的计算结果。

  1.悬臂机翼结构

  第一个算例涉及到具有流线型断面的悬臂机翼结构,主要考虑到该结构具有精确的非定常气动力表达式,因而可以求得颤振临界风速的解析解——Theodorsen解,表1列出了分别按照六种不同方法计算得到的颤振临界风速及其与Theodorsen解的相对误差,这六种方法包括Theodorsen解,古典耦合颤振的van der Put实用计算公式,分离流二维颤振的Selberg实用计算公式,代表三维颤振时域分析方法的状态空间法,代表三维颤振多模态参与频域方法的p-k-F法,以及本文作者提出的全模态颤振分析法[49]。

  由于悬臂机翼颤振是一种古典耦合颤振,因此采用Van der Put计算公式精度较高,而采用分离流颤振假定的Selberg计算公式则误差较大,在三种数值计算方法中,全模态颤振分析方法的计算精度最高。

  2.上海南浦大桥

  第二个算例为上海南浦大桥,该桥是带有双I字梁钝体截面的结合梁斜拉桥,因此,不存在类似于机翼颤振的精确解。列出了分别按照其余5种方法的计算结果和弯扭两个模态耦合颤振的计算结果及其与全模态分析结果的相对误差。

  Van der Put计算公式和Selberg计算公式均不能用于钝体截面的桥梁颤振计算,而其余四种数值分析方法的临界风速计算结果均随参与颤振的振型数量的增加而增大。

  六、结语

  大跨度桥梁颤振稳定性分析始于Theodorsen的古典耦合颤振理论,Scanlan结合非流线型的桥梁断面提出了分离流非定常气动力表达式及其相应的分离流颤振理论,在此基础上,逐步形成和完善了二维和三维桥梁颤振分析方法。因此,空气动力作用下大跨度桥梁风振稳定性研究经历了由简单到复杂、由解析方法到数值方法、由二维桥梁颤振分析到三维桥梁颤振分析以及由多模态参与颤振到全模态参与颤振的发展过程。

相关阅读

添加二级建造师学习群或学霸君

领取资料&加备考群

233网校官方认证

扫码加学霸君领资料

233网校官方认证

扫码进群学习

233网校官方认证

扫码加学霸君领资料

233网校官方认证

扫码进群学习

拒绝盲目备考,加学习群领资料共同进步!

互动交流
扫描二维码直接进入

微信扫码关注公众号

获取更多考试资料