3 高性能混凝土的配制要求
3.1 水泥
高性能混凝土应采用矿物组成合理、细度合格的高标号水泥,还应注意尽可能选择标准稠度需水量较小和水化热较低的水泥,这样容易选择超塑化剂并在较小的单位水量下获得良好的流动性。一般常用42.5级以上的硅酸盐水泥。
3.2 骨料
配制高性能混凝土的骨料与普通混凝土的要求不同,骨料本身的强度要高,一般选用花岗岩、硬质砂岩及石灰岩等。还需控制骨料的粒径、表面特征、用量、吸水率等指标。
3.3 水灰比
配制高性能混凝土的重要措施是减小水灰比,使混凝土密实性提高,其强度和耐久性可显著曾长。一般水灰比在0.3左右,用水量不大于160kg/m3。
3.4 有效减水剂
有效减水剂是表面活性剂,可以大大提高水泥浆的流动性,使得低水灰比配制的混凝土具有高坍落度。同时,还能促进水泥的水化作用,提高早期强度。有效减水剂赋予混凝土高密实度即高强度、高耐久性,同时具有优异的施工性能。
3.5 矿物掺合料
矿物质掺合料是高性能混凝土的又一必不可少组成材料。这类掺合料可以是优质粉煤灰、超细矿渣与天然沸石粉,或硅粉。可单独添加或同时并用,目的在于改善混凝土拌和物的流变性能,提高混凝土强度和耐久性。
3.6 配合比设计
高性能混凝土配合比设计目标首先是高耐久性,并兼顾工作性与强度。为此,世界各国学者均提出了各自的有关高性能混凝土配合比设计方法。如P.K.Mehta和Aitcin推荐的高强度高性能混凝土配合比确定方法;法国路桥实验中心建议的有关高性能混凝土设计方法;日本阿部道彦采用的高性能混凝土配合比计算方法及Domone、Carbonari等 基于最大密实度理论而提出的高性能混凝土配合比设计方法。高性能混凝土对原材料质量及配合比参数变化都较敏感,故配合比计算的精确度要求较高,为此,世界 各国学者研究了高性能混凝土配合比设计的计算机化,例如清华大学博士研究生王德怀进行的“高性能混凝土配合比设计与质量控制的计算机化”课题研究;法国路 桥实验中心提出的优化高性能混凝土配合比设计的RENE—LCPCTM软件等。
高性能混凝土在配制上的特点是低水胶比,选用优质原材料,并除水泥、集料外,必须掺加足够数量的矿物细掺料和有效外加剂。用于桥梁尤其是大跨度桥梁的高性能混凝土应满足:(1)水胶比≤0.4,(2)强度≥41.4MPa,(3)低徐变率。
4 高性能混凝土在桥梁工程中的应用
高性能混凝土达到了使结构强度高、刚度大、耐久性好的要求,同时能满足工业化预拌生产和机械化泵送施工,在世界范围内是一项比较成熟的技术。
桥梁工程中,大跨度桥梁的自重往往占总荷载中的大部分。采用高性能混凝土,可以减小自重,降低截面高度,增强结构耐久性;其早期强度高,可加快施工进度。
我国于70年代中后期,开始在公路桥梁界较大范围内应用预应力混凝土,只不过应用的混凝土标号以C40为主。到80年代,随着交通事业的迅猛发展,我国的公路桥梁用混凝土也在不断发生变化和快速发展,混凝土的强度等级逐步提高。在许多的跨江、跨河和跨海的大型桥梁工程中,应用了C50~C65级的泵送混凝土。如:浙江杭州钱塘江二桥(80m跨预应力混凝土连续箱梁桥),广东番禺洛溪大桥(180m跨预应力混凝土连续刚构桥)等。到了90年代,我国公路桥梁上已开始应用C55~C60级的泵送混凝土。如:杨浦大桥主塔(C50泵送混凝土),四川万县长江公路大桥(420m跨劲性骨架箱形拱桥),广东虎门大桥(888m跨悬索桥,中孔270m跨的预应力混凝土连续刚构桥),南京长江二桥(如采用英国专家的设计方案,可将主跨提高到1100多米,但需提供C80-C100的泵送混凝土),杭州湾大桥(70米箱梁采用C50高性能海工混凝土)、东海大桥等。
高性能混凝土技术在国外的发展与应用以北欧和北美为先导,很快在全球范围内展开,目前已在大量工程中应用,尤其是大跨度桥梁。如:丹麦的大贝尔特海峡大桥、丹麦与瑞典之间的欧上海峡大桥、加拿大联盟大桥、日本的明石海峡大桥等,这些跨海大桥的设计使用寿命均在100年以上。
5 结语
高性能混凝土以其优异的性能使得普通混凝土向高性能混凝土发展成为必然趋势。高性能混凝土是混凝土技术进步的标志。我国在发展高性能混凝土方面才刚刚起步,需要科研、教学、设计、施工部门携手协作,共同促进高性能混凝土的发展。(考试大二级建造师编辑整理)