当价格水平不变,其他因素的变动会导致产品与劳务的需求量变动,引起总需求曲线的移动。例如,减税导致消费支出增加,企业景气程度提高导致投资增加,疫情防控措施趋严导致政府购买增加,全球经济复苏导致净出口增加
t检验又称回归系数检验,步骤如下:第一步:提出假设。设原假设 H0:β=0,备择假设H1:β≠0。第二步:构造t统计量,即服从自由度为n-2的t分布:第三步,给定显著性水平α,查表得到临界值
1.点预测。设回归模型为:yi = α+β xi + μi (i=1, 2 ,3, ..., n)假定在抽样期外的某预测期 f&n
多元线性回归主要用于分析多个自变量对因变量的影响。例如,在分析一家公司的价值时,需要研究该公司多个财务指标,比如负债比例、资产回报率等指标对该公司价值的影响。在该研究中,将公司价值定为因变量,各财务指
设有如下一元线性回归模型:yi:因变量或被解释变量;χi:自变量或解释变量;μi:一个随机变量,称为随机(扰动)项;α,β:是两个常数,称为回归参数,下标i:表示变量的第 i 个观
一元线性回归模型的参数常采用普通最小二乘法(Ordinary LeastSquares,OLS)来估计。假定拟合的最优直线方程为∶达到最小。通过求解上述方程可得一元线性回归参数的估计值。该参数估计方法
拟合优度,又称样本"可决系数",用于度量回归直线对样本观测值的拟合程度,常用R2表示,计算公式为∶其中,TSS为总离差平方和,ESS为回归平方和,RSS为残差平方和。很显然,在总离
在估计总体参数真值时,总是希望参数估计的可靠程度和精确程度越高越好。如果想要二者同时得到提高,唯一的办法就是增大样本容量。样本容量过小,会使可靠程度和精确程度降低;而样本容量过大,则会带来调查费用增加
变量与变量之间通常存在三种关系:确定的函数关系、相关关系以及没有关系。确定的函数关系表示变量之间存在一一对应的确定关系;相关关系表示一个变量的取值不能由另外一个变量唯一确定,即当变量x取某一个值,变量