知识库/期货从业 /线性回归模型

线性回归模型

线性回归模型相关课程

本视频可免费试听30秒,看完整版请购买课程

线性回归模型考点解析

所属考试:期货从业
所属科目:期货投资分析
考点标签: 了解
所属章节:第三章 统计与计量分析/第二节 线性回归分析/线性回归模型
所属版本:

线性回归模型介绍

一元线性回归模型:yi=a+Bxi+μi(i=1,2,3,…,n) 其中,yi称为因变量或被解释变量;xi称为自变量或解释变量;μi是一个随机变量,称为随机(扰动)项;a和β是两个常数,称为回归参数。
多元线性回归主要用于分析影响因变量的因素,不仅涉及一个自变量,而且可能涉及多个自变量。例如,我们在分析一家公众公司的价值时,需要研究其多个财务指标,比如负债比例、资产回报率等指标序列(每个月指标)。这些指标构成公司价值(序列)的核心影响因素,我们定义公司价值(序列)为因变量时,这些财务指标(序列)就是自变量。
多元线性回归主要用于分析影响因变量的因素,不仅涉及一个自变量,而且可能涉及多个自变量。例如,我们在分析一家公众公司的价值时,需要研究其多个财务指标,比如负债比例、资产回报率等指标序列(每个月指标)。这些指标构成公司价值(序列)的核心影响因素,我们定义公司价值(序列)为因变量时,这些财务指标(序列)就是自变量。
多元线性回归分析模型【βk是参数,Xki的线性部分加上随机扰动项μi】

Yi=β0+β1β1i+β2β2i+…+βkXki+μi

专题更新时间:2024/11/20 09:23:41

线性回归模型考点试题

单选题 1.根据某地区2020-2021年农作物种植面积(X)与农作物产值(Y),可以建立一元线性回归模型,估计结果得到判定系数R2=0.9,回归平方和ESS=90,则回归模型的残差平方和RSS为()。
A . 10
B . 100
C . 90
D . 81
去答题练习
单选题 2.对多元线性回归方程的最小二乘回归结果显示,R2为0.92,总离差平方和为500,则残差平方和RSS为()。
A . 10
B . 40
C . 80
D . 20
去答题练习
单选题 3.对回归模型进行检验时,通常假定服从()。
A .
B . t(n-2)
C . t(n)
D .
去答题练习
判断题 4.在多元回归模型中,方程的拟合优度R2越接近0,模型的预测能力会越好。()
A .
B .
去答题练习
判断题 5.在一元回归模型中,模型的拟合优度R2越接近于1,说明模型对于样本预测数据的拟合程度越好,模型的预测效果也会越好。( )
A .
B .
去答题练习

大咖讲解:线性回归模型

李泽瑞
证券从业
银行从业
期货从业
经济学硕士、金融培训高级讲师,李泽瑞老师从事金融类考证培训,教学经验丰富,出口成“段子”,是一个让学员欲罢不能的很有个人风格的老师,江湖学员称被讲课耽误的“德云社”编外弟子。
查看老师课程
相关知识点推荐
高频

相关性

变量与变量之间通常存在三种关系:确定性的函数关系、相关关系以及没有关系。确定性的函数关系表示变量之间存在一一对应的确定关系;相关关系表示一个变量的取值不能由另外一个变量唯一确定,即当变量x取某一个值时,变量y对应的不是一个确定的值,而是对应着某一种分布,各个观测点对应在一条直线上。


高频

一元钱性回归分析

(一)一元线性回归模型的基本假定

设有如下一元线性回归模型:

IMG_301

yi:因变量或被解释变量;

χi:自变量或解释变量;

μi:一个随机变量,称为随机(扰动)项;

α,β:是两个常数,称为回归参数,

下标i:表示变量的第 i 个观察值或随机项

 

t检验

  又称回归系数检验,步骤如下:

  第一步:提出假设。设原假设 H0:β=0,备择假设H1:β≠0。

  第二步:构造t统计量,即服从自由度为n-2的t分布:

IMG_307IMG_308

IMG_309

一元线性回归分析的预测:点预测和区间预测

1.点预测。设回归模型为:

  yi = α+β xi + μi (i=1, 2 ,3, ..., n)

  假定在抽样期外的某预测期 f 中的自变量 xf 已知,上述模型适用于该预测期,这时因变量 yf =α+β xf + μf

其中,随机项满足基本假定。此时 yf 的预测值有两个,一个是期望值,一个是 yf 的点预测值。

 

IMG_311

高频

多元钱性回归分析

多元线性回归模型分析一个因变量和几个自变量之间的关系。形式如下:

IMG_319

IMG_320

(二)多元线性回归模型的参数估计

  同一元线性回归模型类似,可利用OLS估计多元线性回归模型的参数。此时有:

IMG_321

  为使得残差平方和Q达到最小的必要条件为:

IMG_322IMG_323

(三)多元线性回归模型的检验:

1.拟合优度检验

2.F检验(显著性检验)

3.t检验(回归系数检验)