您现在的位置:233网校>教师资格证>中学教师说课>中学数学说课

2009年教师资格认定考试说课指导:函数的单调性说课稿

来源:233网校 2009年11月19日

1.为了理解函数单调性的概念,及时地进行运用是十分必要的.

[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.

[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.


[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.

[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.

2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?

[教师活动]问题6:证明在区间(0,+ ∞)上是单调减函数.

[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较与的大小、不会正确表述、变形不到位或根本不会变形等困难.

[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.

[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.

[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

(四)回顾反思深化概念

[教师活动]给出一组题:

1、定义在R上的单调函数满足,那么函数是R上的单调增函数还是单调减函数?

2、若定义在R上的单调减函数满足,你能确定实数的取值范围吗?

[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.

[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.

[教师活动]作业布置:

(1)阅读课本P34-35例2

(2)书面作业:

必做:教材 P43 1、7、11

选做:二次函数在[0,+∞)是增函数,满足条件的实数的值唯一吗?

探究:函数在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论.

[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

四、教学评价

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.

小编推荐:

2009年教师资格认定考试说课指导集萃

2009年教师资格认定考试说课指导资料汇总

相关阅读

ʦʸ֤ѧϰ

登录

新用户注册领取课程礼包

立即注册
扫一扫,立即下载
意见反馈 返回顶部