3) 气体保护电弧焊(气电焊)
用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气电焊
气电焊与其它焊接方法相比,具有以下特点:
电弧和熔池的可见性好,焊接过程中可根据熔池情况调节焊接参数;
焊接过程操作方便,没有熔渣或很少有熔渣,焊后基本上不需清渣;
电弧在保护气流的压缩下热量集中,焊接速度较快,熔池较小,热影响区窄,焊件焊后变形小;
有利于焊接过程的机械化和自动化,特别是空间位置的机械化焊接;
可以焊接化学活泼性强和易形成高熔点氧化膜的镁、铝、钛及其合金;
可以焊接薄板;
在室外作业时,需设挡风装制,否则气体保护效果不好,甚至很差;
电弧的光辐射很强;
焊接设备比较复杂,比焊条电弧焊设备价格高。
气电焊通常按照电极是否熔化和保护气体不同,分为不熔化极(钨极)惰性气体保护焊和熔化极气体保护焊,氧化混合气体保护焊、CO2气体保护焊和管状焊丝气体保护焊。
① 钨极(不熔化极)惰性气体保护焊。钨极惰性气体保护焊是在惰性气体的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如果使用填充焊丝)一种焊接方法。焊接时惰性形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而可获得优质的焊缝,惰性气体主要采用氩气。
钨极氩弧焊接操作方式分为手工焊、半自动焊和自动焊三类。钨极惰性气体保护焊具有下列优点:不和金属反应,并自动清除工件表面氧化膜的作用,可焊接化学活泼性强的有色金属、不锈钢、耐热钢等和各种合金;适用于薄板及超薄板材料焊接;可进行各种位置的焊接,也是实现单面焊双面成形的理想方法。不足之处是熔深浅,熔敷速度小,生产率较低;其微粒有可能进入熔池,造成污染(夹钨);惰性气体(氩气、氦气)较贵,生产成本较高。
钨极惰性气体保护焊所焊接的板材厚度范围,从生产率考虑以3mm以下为宜。对于某些黑色和有色金属的厚壁重要构件(如压力容器及管道),为了保证高的焊接质量,也采用钨极惰性气体保护焊。
② 熔化极气体保护焊。这种方法也是利用连续的焊丝与工件之间燃烧的电弧作热源,由焊炬喷嘴喷出的气体保护电弧来进行焊接。与钨极气体保护焊不同的是,作为焊极的焊丝在焊接过程中熔化为液态金属,填充在焊缝处。因此其除具备不熔化极气体保护焊的主要优点(可进行各种位置的焊接;适用于有色金属、不锈钢、耐热钢、碳钢、合金钢绝大多数金属的焊接)外,同时也具有焊接速度较快,熔敷效率较高等优点。
③ CO2 气体保护焊。CO2 气体保护焊属熔化极气体保护焊,其具有生产效率高、焊接变形小、适用范围广等特点。焊接时电弧为明弧焊,可见性好,采用半自动焊接法进行曲线焊缝和空间位置焊缝的焊接十分方便,操作简单,容易掌握,但不足之处是焊接飞溅较大,防风能力差。CO2 气体保护焊是目前广泛应用的一种电弧焊方法,主要用于汽车、船舶、管道、机车车辆、集装箱、矿山及工程机械、电站设备和建筑等金属结构的焊接。从被焊件材质上看,CO2气体保护焊可以焊接碳钢和低合金钢;从工件厚度上看,采用钢丝短路过渡的方法,可以焊接薄板;采用粗丝熔滴过渡的方法,可以焊接中、厚板;从焊接位置上看,可以进行全位置焊接,也可以进行平焊、横角焊及其他空间位置的焊接。
(3) 等离子弧焊
等离子弧焊也是一种不熔化极电弧焊,其等离子弧是自由电弧压缩而成的,叫转移电弧。其离子气为氩气、氮气、氦气或其中二者之混合气。等离子弧的能量集中,温度高,焰流速度大。这些特性使得等离子弧广泛应用于焊接、喷涂和堆焊。
等离子弧焊与钨极惰性气体保护焊相比,有以下特点:
1)等离子弧能量集中、温度高,对于大多数金属在一定厚度范围内都能获得小孔效应,可以得到充分熔透,反面成形均匀的焊缝;
2)电弧挺度好,等离子弧的扩散角仅5°左右,基本上是圆柱形,弧长变化对工件上的加热面积和电流密度影响比较小。所以,等离子弧焊弧长变化对焊缝成形的影响不明显;
3)焊接速度比钨极惰性气体保护焊快;
4)能够焊接更细、更薄的工件(如1mm以下极薄金属的焊接);
5)其设备比较复杂、费用较高,工艺参数调节匹配也比较复杂。
(4) 电渣焊 电渣焊是利用电流通过液体熔渣时所产生的电阻热进行焊接的方法。
(5) 激光焊 激光焊是以聚焦的激光束作为能源轰击焊件所产生的热量进行焊接的方式。
(6) 电子束焊 电子束焊是利用加速和聚集的电子束轰击置于真空或非真空中的焊件所产生的热能进行焊接的方法。