您现在的位置:233网校>一级造价工程师>技巧心得

神经网络在造价和快速估算中的应用研究(三)

来源:233网校 2009年2月4日

233网校小编为大家整理造价工程师考试报考,供大家参考使用。更多造价工程师考试报考信息,请关注233网校。也可加入233网校-造价工程师2群365916143,与全国的考生进行交流学习。

由于bp算法采用的是梯度下降法,即训练过程从某一起点沿着误差函数的斜面逐渐趋于最小点e→0,这就有可能会使整个网络模型陷于极小值点,同时bp算法学习速度较慢,为避免这些现象的发生,采用动量法和学习率自适应调整两种策略来抑制网络陷于局部极小和提高其训练速度。
  动量法是在权值和阈值的调节公式中加入动量因子mc,其公式为:


其中:sse为网络的输出误差和
  在学习过程中采用以下自适应学习速率的调整公式:


其中:sse为网络的输出误差和。
  2 实例分析
  为了使问题简单化并提高模型的精度在进行建设工程造价估算时应区分工程类型。本例以框架结构多层住宅为例选取了11个典型工程(其中第11个工程用于检验)。在充分考虑了深圳市工程造价计价模式后本文选取了基础类型、基底标高、工程类别、墙体工程、门类型、门数量、窗类型、窗数量、楼地面、屋面工程、外墙装饰、内墙装饰、层数、层高、建筑面积、造价指数和工程硬、软件环境等17个影响工程造价和工程量的特征作为模型的输入,见表1。考虑到各个工程中门和窗数量差别很大为提高估算的精度我们把门数量和窗数量作为输入,其数量在工程施工图纸上很容易查得,不需作复杂的计算。对于其他文字性表达的工程特征需转变成数字后作为网络的输入,比如基础类型中条型基础取为1,独立基础取为2,满堂基础取为3,其他工程特征输入类推。
  表1典型工程样本输入表
  table 1 sample data input

研究造价工程师历年真题总结发现,每年造价考试的基本题型以及重点考查的知识点都是固定的,近三年各章节的分值分布也比较固定,说明造价考试是有章可循,有规律性的,只要掌握了其中的规律,通过考试不在话下。


以单方造价、每百平方米钢筋量、混凝土量、模板和砌块作为模型的输出,见表2数据。由于模型输出节点采用了sigmoid函数,表2中数据均转换成小数后作为模型的测试样本,比如单方造价以每万平方米为单位换算。
  表2 典型工程样本输出和测试结果表
  table 2 sample data output and test result


模型用m a tlab6. 1软件设计程序进行训练,误差设定为0. 0005,初始学习率取为0. 02。模型经21347次训练后达到预定的误差。测试的结果见表2圆括号中数字。方括号中数字为没有考虑造价指数及工程硬、软件环境的影响。
  从测试结果看,考虑造价指数和工程硬、软件环境的数学模型比没有考虑的数学模型精度高,其工程造价估算为803. 00元/了,误差为3.02%,没有考虑造价指数的数学模型工程量的估算为789. 36元/了,误差为4.67。两数学模型在工程量上相差不大,考虑造价指数和工程硬、软件环境的数学模型的工程量最大误差为钢筋估算量,误差为14.26%,混凝土估算工程量误差为2.93,达到最小。
  3 结论
  
通过实例可以得出以下结论:
  (1)人工神经网络可以用于工程造价和主要工程量的快速估算。工程造价估算非常准确,而工程量估算误差相对较大(如钢筋估算误差为14.26%),其主要原因是由不同设计人员设计带来的一些“噪声”(如钢筋的配筋率不一样)。
  (2)造价指数和工程硬、软件环境是影响工程造价不可或缺的因素,考虑造价指数和工程硬、软件环境影响的数学模型比不考虑的数学模型估算工程造价的精度更高。
  (3)可以采用本数学模型得出的数据作为同类工程的工程造价和主要工程量验证计算的参考依据,达到预防由于工程量计算误差引起的不平衡报价索赔的目的,从而有效控制工程造价。
  (考试大造价)

[nopage]

最后,造价工程师考前应根据自己的学习情况不断调整学习方法与心态,跟着老师的思路去“转”,老师课程中提到的重点知识点,一定要熟练掌握,多学多练多总结,学会举一反三。

造价工程师考试虽然难,但是也并不是攻不可破的,只要您有合理的学习方法,选择适合的课程,即使造价工程师考试难度再大,我们也能把它攻克!233网校教研团队倾心打造,为您定制适合的学习备考方案,讲师教学高效提分,让通过造价考试不再难。

相关阅读

۹ʦѧϰ

登录

新用户注册领取课程礼包

立即注册
扫一扫,立即下载
意见反馈 返回顶部