知识库/造价工程师 /焊接热处理

焊接热处理

焊接热处理相关课程

本视频可免费试听30秒,看完整版请购买课程

焊接热处理考点解析

所属考试:造价工程师
授课老师:李恺
所属科目:技术与计量(安装)
考点标签: 了解
所属章节:第二章 安装工程施工技术/第一节 切割和焊接/焊接热处理
所属版本:

焊接热处理介绍

热处理是通过加热和冷却固态金属的操作方法来改变其内部组织结构,并获得所需金属的物理、化学和力学性能的一种工艺。
热处理一般由加热、保温和冷却三个阶段组成的。 
(一)常用热处理方法
安装工程施工中的热处理一般分为焊前预热和焊后热处理两部分。
2.焊后热处理
焊后热处理应在外观检查和规定的无损检测合格后进行,对容易产生焊接延迟裂纹的钢材,焊后应及时进行焊后热处理。焊后热处理主要有退火、回火、正火及淬火工艺。
根据钢材的加热温度、保持时间及冷却状况可分为完全退火、不完全退火、去应力退火三种。
(1)钢的退火工艺
1)完全退火。完全退火是将钢件加热到临界点Ac3 (对亚共析钢而言,是指珠光体 全部转变为奥氏体、过剩相铁素体也完全消失的温度)以上适当温度,在炉内保温缓慢冷 却的工艺方法。其目的是细化组织、降低硬度、改善加工性能、去除内应力。完全退火适 用于中碳钢和中碳合金钢的铸、焊、轧制件等。
2)不完全退火。不完全退火是将钢件加热到临界点Ac1 ~Ac3或Acm之间适当温度,保温后缓慢冷却的工艺方法。其目 的是降低硬度、改善切削加工性能、消除内应力。常用于工具钢工件的退火。
3)去应力退火。去应力退火是将钢件加热到临界点Ac1以下适当温度,保持一定时 间后缓慢冷却的方法。其目的是为了去除由于形变加工、机械加工、铸造、锻造、热处理 及焊接等过程中的残余应力。对于焊接钢件,一般其加热温度为500~550℃。保温时间 为2~4h。
(2)钢的正火工艺
正火是将钢件加热到临界点Ac3或Acm以上适当温度,保持一定时间后在空气中冷却, 得到珠光体基体组织的热处理工艺。其目的是消除应力、细化组织、改善切削加工性能及 洋火前的预热处理,也是某些结构件的最终热处理。
 其目的是消除应力、细化组织、改善切削加工性能及淬火前的预热处理,也是某些结构件的最终热处理。
正火较退火的冷却速度快,过冷度较大。经正火处理的工件其强度、硬度、韧性比退火高,而且生产周期短,能量耗费少,故在可能情况下,应优先考虑正火处理。
(3)钢的淬火工艺
淬火是将钢奥氏体化后以适当的冷却速度冷却,发生马氏体转变。其目的是为了提高钢件的硬度、强度、和耐磨性,多用于各种工模具、轴承、零件等。
(4)钢的回火工艺
回火的目的是调整工件的强度、硬度、韧性等力学性能,降低或消除应力,避免变形、开裂,并保持使用过程中的尺寸稳定。
回火按不同的加热温度可分为:
1)低温回火。主要用于各种高碳钢的切削工具、模具、流动轴承等的回火处理。
2)中温回火。使工件得到好的弹性、韧性及相应的硬度,一般适用于中等硬度零件、弹簧等。
3)高温回火。即调质处理,主要用于重要结构零件。钢经调质处理后不仅强度较高,而且塑性、韧性更显著超过正火处理的情况。

专题更新时间:2024/12/26 09:40:59

焊接热处理考点试题

单选题 1. 对气焊焊口应采用正火加高温回火处理,其中采用正火处理的目的是(  )。
A . 消除残余应力
B . 去氢
C . 细化晶粒
D . 稳定几何尺寸
去答题练习
单选题 2.工地拼装的大型普通低碳钢容器的组装焊缝应采用的热处理方式为(  )。
A . 单一中温回火
B . 单一高温回火
C . 正火加高温回火
D . 低温回火
去答题练习
单选题 3.将钢件加热到临界点AC1以下适当温度,然后保持一定时间后缓慢冷却,此焊后热处理方法是()。
A . 完全退火
B . 去应力退火
C . 正火
D . 淬火
去答题练习
多选题 4.热处理是由( )等阶段组成的。
A . 加热
B . 保温
C . 冷却
D . 熔融
去答题练习
单选题 5.为细化气焊焊缝及热影响区的晶粒,消除残余应力,应采用的焊后热处理方式为( )。
A . 高温回火
B . 退火加高温回火
C . 正火加高温回火
D . 淬火加高温回火
去答题练习

大咖讲解:焊接热处理

李恺
造价工程师
二级造价工程师
国家注册一级建造师、国家注册一级造价工程师、国家注册一级消防工程师、国家注册安全工程师、监理工程师
查看老师课程
相关知识点推荐
高频

切割

切割方法分为机械切割、火焰切割、电弧切割和冷切割四大类。
(一)机械切割
(二)火焰切割
火焰切割是利用可燃气体在氧气中剧烈燃烧及被切割金属燃烧所产生的热量而实现连 续切割的方法。其工作原理是用氧气与可燃气体混合后燃烧形成的高温火焰,将被割金属表面加热到燃点,然后喷出高速切割氧流,使金属剧烈氧化燃烧并放出大量热量,高压切割氧流同时将氧化燃烧形成的熔渣从割口间隙中吹除,形成割口,随着割炬向前移动使工 件形成切口。
氧-燃气火焰切割按所使用的燃气种类,可分为氧-乙炔火焰切割(俗称气割)、氧-丙烷火焰切割、氧-天然气火焰切割和氧-氢火焰切割。实际生产中应用最广的是氧-乙炔火焰切割和氧-丙烷火焰切割。
1.气割金属需满足的条件
(1)金属在氧气中的燃烧点应低于其熔点;
(2)金属燃烧生成氧化物的熔点应低于金属熔点,且流动性要好; 
(3)金属在切割氧流中的燃烧应是放热反应,且金属本身的导热性要低。
符合上述气割条件的金属有纯铁、低碳钢、中碳钢、低合金钢以及钛。
铸铁、不锈钢、铝和铜等不满足气割条件,不能应用火焰切割,目前常用的是等离子弧切割。
2.氧-乙炔火焰切割
氧-乙炔火焰的最高温度可达3300℃,对金属表面的加热速度较快。采用不同规格的 割炬和割嘴,可以切割不同厚度的低碳钢、中碳钢和低合金钢。如果钢材中含有 铬、镍、铝等抗氧化的合金元素含量过高时,如不锈钢、工具钢等就必须采用氧熔剂切割 或等离子弧切割。
氧-乙炔火焰切割由于安全性差,对环境污染严重和乙炔气制取成本高等原因,正逐步被氧丙烧火焰切割所取代。
3.氧-丙烷火焰切割 
氧-丙烷火焰切割与氧-乙炔相比具有以下优点:
(1)丙烷的点火温度为580℃,大大高于乙炔气的点火温度,且丙烷的爆炸范围比乙炔窄得多,故氧-丙烷切割的安全性大大高于氧-乙炔火焰切割。
(2)丙烷气制取容易,成本低廉,且易于液化和灌装,对环境污染小。
(3)氧-丙烷火焰温度适中,选用合理的切割参数切割时,切割面的粗糙度优于氧-乙炔火焰切割。
氧-丙烷切割的缺点是火焰温度比较低,切割预热时间略长于氧-乙炔火焰切割。氧气的消耗量高于氧-炔焰切割。
氧-丙烷总的切割成本远低于氧-乙炔火焰切割。
4.氧-氢火焰切割
氧-氢火焰切割火焰集中,割口表面光洁度高,无烧塌和圆角现象,不结渣。氧-氢火焰切割具有以下优点:
(1)成本较低。无需搬运和更换气瓶,减轻了工人劳动强度,提高了工时利用率。
(2)安全性好。
(3)环保。
5.氧熔剂切割
氧熔剂切割是在切割氧流中加入纯铁粉或其它熔剂,利用它们的燃烧热和废渣作用实现气割的方法。
此种切割方法烟尘少,切断面无杂质,可用来切割不锈钢等。
(三)电弧切割
电弧切割按生成电弧的不同可分为等离子弧切割和碳弧气割。
1.等离子弧切割 
等离子弧切割是一种常用的切割金属和非金属材料的工艺方法。等离子弧切割的机理 与氧燃气切割有着本质上的差别。它是利用高速、高温和高能的等离子气流来加热和熔化被切割材料,并借助内部的或者外部的高速气流或水流将熔化材料排开,直至等离子气 流束穿透背面而形成割口。 
等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,电孤温度可高达 15000~20000C ,远远超过所有金属以及非金属的熔点。因此等离子弧 切割过程不是依靠氧化反应,而是靠熔化来切割材料,比氧一燃气切割的适用范围大得多, 能够切割绝大部分金属和非金属材料,如不锈钢、高合金钢、铸铁、铝、铜、鸽、铝、和陶瓷、水泥、耐火材料等。 
等离子切割机配合不同的工作气体可以切割各种气割难以切割的金属,尤其是对于有色金属(不锈钢、碳钢、铝、铜、铁、镍)切割效果更佳其主要优点在于切割厚度不大 的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法5~6倍、切割面光洁、热变形小、几乎没有热影响区。
2.碳弧气割 
利用碳弧气割可对金属进行切割,也可在金属上加工沟槽。目前,这种方法在金属结构制造部门得到广泛应用。
碳弧气割的适用范围及特点为:
(1)在清除焊缝缺陷和清理焊根时,能在电弧下清楚地观察到缺陷的形状和深度,生产效率高。
(2)可用来加工焊缝坡口,特别适用于开U型坡口。
(3)使用方便,操作灵活。
(4)可以加工多种不能用气割加工的金属,如铸铁、高合金钢、钢和铝及其合金等, 但对有耐腐蚀要求的不锈钢一般不采用此种方法切割。
(5) 设备、工具简单,操作使用安全。
(6) 碳弧气割可能产生的缺陷有夹碳、粘渣、铜斑、割槽尺寸和形状不规则等。 
此种切割方法烟尘少,切断面无杂质,可用来切割不锈钢等。
等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,电孤温度可高达 15000~20000C ,远远超过所有金属以及非金属的熔点。因此等离子弧 切割过程不是依靠氧化反应,而是靠熔化来切割材料,比氧一燃气切割的适用范围大得多, 能够切割绝大部分金属和非金属材料,如不锈钢、高合金钢、铸铁、铝、铜、鸽、铝、和 陶瓷、水泥、耐火材料等。 
(四)激光切割
激光切割与其他热切割方法相比较,主要特点有切口宽度小(0.1mm左右)、切割精度高、速度快、质量好,并可切割多种材料(金属、非金属、金属基和非金属基复合材料、皮革、木材及纤维等)。激光切割由于受激光器功率和设备体积的限制,只能切割中、小厚度的板材和管材,而且随着工件厚度的增加,切割速度明显下降。此外,激光切割设备费用高,一次性投资大。

高频

焊接

(一)焊接的分类及特点
按照焊接过程中金属所处的状态及工艺的特点,可以将焊接方法分为熔化焊(熔焊)、压力焊(压焊)和钎焊三大类。
1.熔化焊
(1)气焊。气焊所用的可燃气体与气割相同,主要有乙炔、丙烷、天然气和氢气等, 氧气为助燃气体。气焊用的焊丝起填充金属的作用,焊接时与熔化的母材一起组成焊缝金属。
气焊的主要优点 :
①设备简单、费用低、移动方便、使用灵活。
②通用性强,对铸铁及某些有色金属的焊接有较好的适应性。
③无须电源,因而在无电源场合和野外工作时有实用价值。
气焊的主要缺点:
①生产效率较低,气焊火焰温度低,加热速度慢。
②焊接后工件变形和热影响区较大,焊接变形大。
③焊接过程中,熔化金属受到的保护差,焊接质量不易保证。
④较难实现自动化。 
(2)电弧焊 
1)手工焊条电弧焊(简称手弧焊),目前在工业生产中广泛应用。
手弧焊的主要优点:
①操作灵活,进行短缝焊接作业。特别适用于难以达到部位的焊接。 
②设备简单,使用方便。投资少。
③应用范围广。适用于各种厚度和各种结构形状的焊接。
2)埋弧焊。电弧在一层颗粒状的可熔化焊剂覆盖下燃烧进行焊接。
埋弧焊的主要优点是:
①热效率较高,熔深大,工件的坡口可较小,减少了填充金属量。
②焊接速度高。
③焊接质量好。
④在有风的环境中焊接时,埋弧焊的保护效果胜过其它焊接方法。
埋弧焊的缺点有:
①一般只适用于水平位置焊缝焊接。
②难以用来焊接铝、钛等氧化性强的金属及其合金。
③不能直接观察电弧与坡口的相对位置,容易焊偏。
④只适于长焊缝的焊接。
⑤不适合焊接厚度小于1mm的薄板。
由于埋弧焊熔深大,生产效率高,机械化操作的程度高,因而适于焊接中厚板结构的长焊缝和大直径圆筒的环焊缝,尤其适用于大批量生产。是当今焊接生产中最普遍使用的焊接方法之一。
(3)气体保护电弧焊(气电焊)。
气电焊通常按照电极是否熔化和保护气体的不同,分为不熔化极(钨极惰性气体保护焊)和熔化极气体保护焊,氧化混合气体保护焊、CO2气体保护焊和管状焊丝气体保护焊。
1)钨极惰性气体保护焊(TIG焊接法)。
TIG焊接法具有下列优点:
①钨极不熔化,只起导电和产生电弧作用,比较容易维持电弧的长度,焊接过程稳定,易实现机械化;保护效果好,焊缝质量高。 
②可焊接化学活泼性强的有色金属、不锈钢、耐热钢等和各种合金;对于某些黑色和有色金属的厚壁重要构件(如压力容器及管道),也采用钨极惰性气体保护焊。
钨极惰性气体保护焊的缺点有:
①熔深浅,熔敷速度小,生产率较低。
②只适用于薄板(6mm以下)及超薄板材料焊接。
③气体保护幕易受周围气流干扰,不适宜野外作业。
④惰性气体较贵,生产成本较高。
2)熔化极气体保护焊(MIG焊)。
MIG焊的特点:
①和TIG焊一样,它几乎可焊接所有金属,尤其适合焊有色金属、不锈钢、耐热钢、碳钢、合金钢等。
②焊接速度较快,熔敷效率较高,劳动生产率高。
③MIG焊可直流反接,焊接铝、镁等金属时有良好的阴极雾化作用,可有效去除氧化膜,提高接头焊接质量。
④不采用钨极,成本比TIG焊低。
3)CO2 气体保护焊。
主要优点:
①焊接生产效率高。
②焊接变形小、焊接质量较高。
③焊缝抗裂性能高,焊缝低氢且含氮量也较少。
④焊接成本低。
⑤焊接时电弧为明弧焊,可见性好,操作简便,可进行全位置焊接。
CO2 气体保护焊不足之处:
①焊接飞溅较大,焊缝表面成形较差。
②不能焊接容易氧化的有色金属。
③抗风能力差,给室外作业带来一定困难。
④很难用交流电源进行焊接,焊接设备比较复杂。
(4)等离子弧焊。是一种不熔化极电弧焊,等离子弧是自由电弧压缩而成的,离子气为氩气、氮气、氦气或其中二者之混合气。广泛应用于焊接、喷涂和堆焊。
(5)电渣焊。
电渣焊的焊接效率可比埋弧焊提高2~5倍,焊接时坡口准备简单,焊接熔池体积较大,焊接区在高温停留时间较长,冷却速度缓慢,使热影响区比电弧焊宽得多,且晶粒粗大,机械性能下降,故焊后一般要进行热处理(通常用正火)以改善组织和性能。
电渣焊主要应用于30mm以上的厚件,特别适用于重型机械制造业,如轧钢机、水轮机、水压机及其它大型锻压机械。
电渣焊可进行大面积堆焊和补焊。
(6)激光焊。
特点:
1)激光束能量密度很高,焊速快,热影响区和焊接变形很小,尺寸精度高。在大气中焊接,也不需外加保护就能获得高质量焊缝。
2)可焊多种金属、合金、异种金属及某些非金属材料。
3)激光可透过透明材料对封闭结构内部进行无接触焊接(如电子真空管、显像管的内部接线等)。
4)特别适于焊微型、精密、排列非常密集、对热敏感性强的工件,如厚度小于0.5mm薄板、直径小于0.6mm的金属丝。
5)设备投资大,养护成本高,焊机功率受限。
6)对激光束波长吸收率低和含有大量低沸点元素的材料一般不宜采用。
2.压力焊
1)点焊多用于薄板的非密封性连接。如汽车驾驶室、金属车厢复板的焊接。 
2)缝焊多用于焊接有密封性要求的薄壁结构。如油桶、罐头罐、暖气片、飞机和汽车油箱的薄板焊接。
3)对焊的接头性能较差,多用于对接头强度和质量要求不很高,直径小于20mm的棒料、管材、门窗等构件的焊接。
3.钎焊
钎焊是使钎料熔化(焊件不熔化)实现焊接的方法。钎焊接头一般强度较低,耐热性差。适宜于小而薄和精度要求高的零件。
1)对母材没有明显的不利影响;
2)钎焊温度低,可对焊件整体加热,引起的应力和变形小,容易保证焊件的尺寸精度;
3)有对焊件整体加热的可能性,可用于结构复杂、开敞性差的焊件,并可一次完成多缝多零件的连接; 
4)容易实现异种金属、金属与非金属的连接;
5)对热源要求较低,工艺过程简单。

高频

焊接过程质量检验

(一)焊接前检验
(1)母材和焊材。
(2)零部件主要结构尺寸。
(3)组对质量。
(4)坡口清理检查。
(5)焊接前的确认。
(二)焊接中检验
(三)焊后成品质量检验
1.外观检验
(1)焊缝表面。
1)焊缝表面的形状尺寸及外观质量应符合设计要求,设计无要求时应符合现行国家有关标准。
2)焊缝表面不允许存在的缺陷包括裂纹、未焊透、未熔合、表面气孔、外露夹渣、 未焊满等。
(2)几何尺寸。
容器焊接后应检查几何尺寸,包括同一端面最大内直径与最小内直径之差、椭圆度、 矩形容器截面上最大边长与最小边长之差等。
2.无损探伤

高频

无损探伤

无损探伤是在不损害或基本不损害材料或构件的情况下采用物理、化学等方法和手段,对各种工程材料、零部件和结构件进行有效的检验和测试,借以评价它们的完整性、 连续性、安全可靠性及某些物理性能。包括探测材料或构件中是否存在缺陷,并判断缺陷的形状、性质、大小、位置、取向、分布和内含物等情况;还能提供涂层厚度、材料成 分、组织状态、应力分布等信息。
目前应用最广泛的无损检测方法主要是射线检测法、超声检测法、液体渗透法、磁粉检验法和涡流检测法。
1.射线探伤(RT)
(1)X射线、γ射线探伤。
1)X射线探伤的优点是显示缺陷的灵敏度高,特别是当焊缝厚度小于30mm时,较γ射线灵敏度高,其次是照射时间短、速度快。缺点是设备复杂、笨重,成本高,操作麻烦,穿透力较γ射线小。

2)γ射线是由放射性同位素或放射性元素蜕变产生的。其探伤厚度分别为200mm、120mm和100mm 。γ射线的特点是设备轻便灵活,特别是施工现场更为方便,而且投资少,成本低。但其曝光时间长,灵敏度较低。在石油化工行业现场施工时经常采用。
(2)中子射线检测。独特优点是能够使检验封闭在高密度金属材料中的低密度材料如非金属材料成为可能。
缺点是中子源和屏蔽材料大而重,便携源价格高,所需曝光时间相当长,比X射线法检测曝光程序复杂,需要解决工作人员的安全防护问题。 
2.超声波探伤(UT)
超声波探伤与X射线探伤相比,具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点。
缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性。
超声波探伤适合于厚度较大的零件检验。
3.涡流检测
涡流检测法只能检查金属材料和构件的表面和近表面缺陷。
涡流检测的主要优点是检测速度快,探头与试件可不直接接触,无需耦合剂。
主要缺点是只适用于导体,对形状复杂试件难作检查,只能检查薄试件或厚试件的表面、近表面缺陷。
4.磁粉检测
磁粉检测法可以检测材料和构件的表面和近表面缺陷,对裂纹、发纹、折叠、夹层和未焊透等缺陷极为灵敏。可检出的缺陷最小宽度可为约为1μm;几乎不受试件大小和形状的限制;局限性是只能用于铁磁性材料;只能发现表面和近表面缺陷;宽而浅的缺陷也难以检测;检测后常需退磁和清洗;试件表面不得有油脂或其他能粘附磁粉的物质。
5.液体渗透检测
液体渗透检测是检验非疏孔性金属和非金属试件表面上开口缺陷的一种无损检测方法。液体渗透检验的优点是不受被检试件几何形状、尺寸大小、化学成分和内部组织结构的限制,也不受缺陷方位的限制,一次操作可同时检验开口于表面上的所有缺陷;检验的速度快,操作比较简便,大批量的零件可实现100%的检验;缺陷显示直观,检验灵敏度高。
最主要的限制是只能检出试件开口于表面的缺陷,不能显示缺陷的深度及缺陷内部的形状和大小。