第二章风险与收益分析
本章与第三章是《财务管理》的“工具”章,就如同木匠做家具需要锯、锤等工具一样,《财务管理》同样需要“锯”、“锤”等工具,而本章与第三章就是《财务管理》的“锯”、“锤”。本章主要讲了风险的计量。在以前,人们只知道有风险,却无法对它进行计量,就如同人们现在无法对爱情进行计量一样。后来,聪明的人们学会了去计量风险,从而使得风险不再那么抽象了。
有一句被很多人认为是废话的一句话:收益伴随着风险。可见收益与风险就像一个人的左和右,永不分离。讲风险,就不能不讲收益。资产的收益有两种表示方法:金额(A资产的收益额是888元);百分比(B资产的收益率是88.8%)。而教材所谓的资产的收益指的是资产的年收益率。单期资产的收益率=利(股)息收益率+资本利得收益率,能把教材上的「例2—1」看懂,遇到类似的题会做就可以了。
资产收益率的类型包括:
1.实际收益率。就是已实现(确定可以实现)的上述公式计算的资产收益率。
2.名义收益率。资产和约上标明的收益率,即“白纸黑字”的收益率。
3.预期收益率。有三种计算方法:按照未来收益率及其出现概率的大小进行的加权平均的计算;按照历史收益率及其出现概率的大小进行的加权平均的计算;从历史收益率中选取能够代表未来收益率的“好同志”,并假定出现的概率相等,从而计算它们的算术平均值。采集者退散本文来源:考试大网来源:考试大的美女编辑们
4.必要收益率。投资的的目的是产生收益,而且这个收益有个最低要求,必要收益率就是这个最低要求。
5.无风险收益率。即便是投资短期国库券也是有风险的,只不过风险很低,所以便用它的利率近似地代替无风险收益率。在这个世界上实际上是不存在只有无风险收益率的资产的。
6.风险收益率。投资者既然承担了风险,就必然要求与此相对应的回报,该回报就是风险收益率。
讲完了收益,该讲风险了。衡量风险的指标主要有:收益率的方差(以下简称方差)、收益率的标准差(以下简称标准差)、收益率的标准离差率(以下简称变异系数)等。对于方差、标准差的公式,它们的推导过程十分复杂,没办法,只能死记硬背。而变异系数则是说明每一元预期收益所承担风险的大小。如果把资产所有预期收益所承担的风险比作一块蛋糕的话,变异系数不过是在“切蛋糕”而已。大家能把书上的「例2—4」、「例2—5」、「例2—6」看懂、做会(即能够套用公式)就可以了。
“风险控制对策”和“风险偏好”看上两遍,有个印象就可以了。
人们在投资的时候往往不是投资一项资产,而是投资多项资产(鸡蛋最好还是不要放在一个篮子里),这里就有一个资产组合的问题。那么资产组合的预期收益率如何计算呢?很简单,就是将各项资产的预期收益率乘以各项资产在资产组合中所占的价值比例,然后求和。对于资产组合的风险,大家只需要知道两项资产组合的风险如何计量就可以了(对该公式也只能死记硬背,除非你的数学或统计学学的好);对于多项资产组合的风险,大家只要知道方差(非系统风险)是表示各资产本身的风险状况对组合风险的影响、协方差(系统风险)是表示各项资产收益率之间相互作用(共同运动)所产生的风险就可以了。
教材着重讲了一下系统风险。系统风险用系统风险系数(以下简称贝他系数)表示。贝他系数的定义式能看懂更好,看不懂也没关系。我们假设整个市场的贝他系数是1,如果某项资产的贝他系数等于1,说明该资产的收益率与市场平均收益率呈同方向、同比例的变化,其所含的系统风险与市场组合的风险一致;如果某项资产的贝他系数小于1,说明该资产收益率的变动幅度小于市场组合收益率的变动幅度,其所含的系统风险小于市场组合的风险;如果某项资产的贝他系数大于1,说明该资产收益率的变动幅度大于市场组合收益率的变动幅度,其所含的系统风险大于市场组合的风险。对于资产组合的贝他系数的计算,就用单项资产的贝他系数乘以该项资产在资产组合中所占的价值比例,然后求和即可。
教材第三节说了一种理论:证券市场理论。那么该理论与风险和收益有什么关系呢?采集者退散本文来源:考试大网来源:www.examda.comwww.Examda.CoM考试就到考试大
本章第三节说了一种理论:证券市场理论。该理论认为:在市场机制的作用下,证券市场自发地对各种证券的风险与收益进行报考调整,最终实现风险和收益的均衡状态。在风险与收益分析(上)中我们说过,在这个世界上是不存在没有风险的资产的,因此任何一项资产的必要收益率都是由两部分组成:无风险收益率与风险收益率。风险收益率是风险价值系数与变异系数的乘积计算出来的,变异系数在风险与收益分析(上)中已经讲过,而风险价值系数则要运用统计学、数学、心理学、社会学、经济学等众多学科的相关知识求出,很复杂且准确度较低。从以上分析可以看出,用这样的方法计算必要收益率实用性很差。
资本资产定价模型的计算公式是:某资产的必要收益率=无风险收益率+贝他系数×市场风险溢酬=无风险收益率+贝他系数×(市场组合收益率-无风险收益率)。如果我们把贝他系数看作自变量(自己变化),用横坐标表示;把必要收益率看作因变量(因为别“人”变化自己才变化),用纵坐标表示;把无风险收益率和市场风险溢酬作为已知量,就得到如下的直线方程:
Y=无风险收益率+X×市场风险溢酬(X是指贝他系数,Y是指必要收益率)
依照上述方程所划出来的线就是证券市场线。这条线非常类似于商品价值线,就像商品的价格是围绕着商品价值线上下波动一样,资产的价格线也是围绕着证券市场线上下波动。因此,某资产的预期收益率就等于它的必要收益率。
现在让我们来看一下如何求出某资产的预期收益率。要想求出这个数,需要知道三个数:无风险收益率、贝他系数、市场组合收益率。要想求出贝他系数,需要知道三个数(可参见贝他系数的定义式):某项资产的收益率与与市场组合收益率的相关系数(以下简称与市场组合的相关系数)、该项资产收益率的标准差(以下简称单项资产标准差)、市场组合收益率的标准差(以下简称市场组合标准差),单项资产标准差以及市场组合标准差的计算过程可参见教材相关内容。本段所述内容共涉及七类数:某资产的预期收益率、无风险收益率、贝他系数、市场组合收益率、与市场组合的相关系数、单项资产标准差、市场组合标准差。考试时,较常见的出题思路是给出七类数中的某几类数,让考生通过公式求出另外几类数。
本章最后说了一个套利定价模型,该理论认为某项资产的预期收益率包括两大部分:无风险收益率(不包括通货膨胀因素所要求的报酬率)和影响该资产的各种风险所要求的的报酬率的总和(包括通货膨胀因素所要求的报酬率)。