您现在的位置:233网校>中级会计师考试>财务管理>财务管理学习笔记

2006年中级会计《财务管理》答疑(二)

来源:233网校 2006年8月9日

  〔教师提示之二)

  【问题】已知(F/A,10%,9)=13.579,(F/P,10%,1)=1.1,(F/P,10%,10)=2.5937,则10年、10%的预付年金终值系数为多少?

  【解答】(1)注意:“利率为i,期数为n”的预付年金终值系数

  =(1+i)1+ (1+i)2+……+(1+i)(n-1)+(1+i)n

  由此可知:

  “利率为i,期数为n-1”的预付年金终值系数

  =(1+i)1+ (1+i)2+……+(1+i)(n-1)

  所以:“利率为i,期数为n”的预付年金终值系数

  =“利率为i,期数为n-1”的预付年金终值系数+(1+i)n

  =“利率为i,期数为n-1”的预付年金终值系数+(F/P,i,n)

  (2)根据“预付年金终值系数的表达式”和“普通年金终值系数的表达式”可知:

  “利率为i,期数为n”的预付年金终值系数=(F/A,i,n)×(F/P,i,1)

  即:“利率为i,期数为n-1”的预付年金终值系数=(F/A,i,n-1)×(F/P,i,1)

  所以:10年、10%的预付年金终值系数

  =“9年、10%的预付年金终值系数”+(F/P,10%,10)

  =(F/A,10%,9)×(F/P,10%,1)+(F/P,10%,10)

  =13.579×1.1+2.5937

  =17.5306

  〔教师提示之一〕

  【问题】10年期,10%的即付年金的终值系数=(F/A,10%,9)*(F/P,10%,1)+(F/P,10%,10),那么即付年金的现值系数有类似的公式吗?

  【解答】即付年金现值系数也有类似的公式,推导过程如下:

  “利率为i,期数为n”的即付年金现值系数

  =(1+i)0+(1+i)-1+……+(1+i)-(n-2)+(1+i)-(n-1)

  “利率为i,期数为n-1”的即付年金现值系数

  =(1+i)0+(1+i)-1+……+(1+i)-(n-2)

  所以:“利率为i,期数为n”的即付年金现值系数

  =“利率为i,期数为n-1”的即付年金现值系数+(1+i)-(n-1)

  =“利率为i,期数为n-1”的即付年金现值系数+(P/F,i,n-1)

  根据“即付年金现值系数的表达式”和“普通年金现值系数的表达式”可知:

  “利率为i,期数为n”的即付年金现值系数=(P/A,i,n)×(F/P,i,1)

  即:“利率为i,期数为n-1”的即付年金现值系数=(P/A,i,n-1)×(F/P,i,1)

  所以:“利率为i,期数为n”的即付年金现值系数=(P/A,i,n-1)×(F/P,i,1)+(P/F,i,n-1)

相关阅读
最近直播往期直播

下载APP看直播

登录

新用户注册领取课程礼包

立即注册
扫一扫,立即下载
意见反馈 返回顶部