您现在的位置:233网校 >银行从业资格考试 > 银行初级 > 初级《风险管理》 > 初级风险管理学习笔记

2010年银行从业考试《风险管理》精讲讲义3.2

来源:233网校 2010-02-05 10:12:00

  (2)信用评分法

  信用评分模型是一种传统的信用风险量化模型,利用可观察到的借款人特征变量计算出一个数值(得分)来代表债务人的信用风险,并将借款人归类于不同的风险等级。

  背景知识:信用评分模型

  20世纪60年代,信用卡的推出促使信用评分技术取得了极大发展,并迅速扩展到其他业务领域。奥而特曼(Altman,1968)提出了基于多元判别分析技术的Z评分模型;马丁(Martin,1977)、奥尔森(Ohlson,1980)和威金顿(Wiginton,1980)则首次运用Logit模型分析企业破产问题。

  信用评分模型的关键在于特征变量的选择和各自权重的确定。基本过程是:

  ①首先,根据经验或相关性分析,确定某一类别借款人的信用风险主要与哪些经济或财务因素有关,模拟出特定形式的函数关系式;

  ②其次,根据历史数据进行回归分析,得出各相关因素的权重;

  ③最后,将属于此类别的潜在借款人的相关因素数值代入函数关系式计算出一个数值,根据该数值的大小衡量潜在借款人的信用风险水平,给予借款人相应评级并决定贷款与否。

  存在一些突出问题:

  ①信用评分模型是建立在对历史数据(而非当前市场数据)模拟的基础上,因此是一种向后看(Backward Looking)的模型。

  ②信用评分模型对借款人历史数据的要求相当高。

  ③信用评分模型虽然可以给出客户信用风险水平的分数,却无法提供客户违约概率的准确数值,而后者往往是信用风险管理最为关注的。

  (3)违约概率模型

  违约概率模型分析属于现代信用风险计量方法。其中具有代表性的模型有穆迪的RiskCalc和Credit Monitor、KPMG的风险中性定价模型和死亡率模型,在银行业引起了很大反响。

  《巴塞尔新资本协议》也明确规定,实施内部评级法的商业银行可采用模型估计违约概率。

  与传统的专家判断和信用评分法相比,违约概率模型能够直接估计客户的违约概率,因此对历史数据的要求更高,需要商业银行建立一致的、明确的违约定义,并且在此基础上积累至少五年的数据。

相关阅读

添加银行学霸君或学习群

领取资料&加备考群

233网校官方认证

扫码加学霸君领资料

233网校官方认证

扫码进群学习

233网校官方认证

扫码加学霸君领资料

233网校官方认证

扫码进群学习

拒绝盲目备考,加学习群领资料共同进步!

银行从业书籍
互动交流
扫描二维码直接进入

微信扫码关注公众号

获取更多考试资料